
Carnegie Mellon
Software Engineering Institute

Agora: A Search
Engine for Software
Components
Robert C. Seacord
Scott A. Hissam
Kurt C. Wallnau

August 1998

WM824 öö

TECHNICAL REPORT
CMU/SEI-98-TR-011

ESC-TR-98-011

BTIC QUALITY INSPECTED 1

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

CarnegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Agora: A Search
Engine for Software
Components
CMU/SEI-98-TR-011
ESC-TR-98-011

Robert C. Seacord
Scott A. Hissam
Kurt C. Wallnau

August 1998

Dynamic Systems

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

fMmF?\ o^

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1998 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-pur-
pose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350
Earl L. Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free
in the U.S. 1-800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-mail:
sei@asset.com

Copies of this document are available through the National Technical Information Service (NTTS). For in-
formation on ordering, please contact NTIS directly: National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DT7.C). DTTC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and po-
tential contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,
please contact DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman
Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800
225-3842.

Table of Contents

Abstract ix

1 An Emerging Component Industry 1
1.1 Background 1
1.2 Agora 1

2 Features and Capabilities 3
2.1 Location and Indexing 3
2.2 Search and Retrieval 3
2.3 Advanced Search Features 5
2.4 Industry Domain 6

3 Implementation 9
3.1 AltaVista Search Developer's Kit (SDK) 11
3.2 JavaBeans Agent 12
3.3 Performance of the JavaBeans Agent 14
3.4 CORBAAgent 15

3.4.1 CORBA Background 16
3.4.2 Application Bridge 16

4 Comparison of Agora to Related
Technologies 19

4.1 Agora and Existing Search Engines 19
4.2 Agora and Software Repositories 19

5 Summary and Conclusions 21

References 23

CMU/SEI-98-TR-011

CMU/SEI-98-TR-011

List of Figures

Figure 1 Agora Query Interface 4
Figure 2 Agora Architecture 10
Figure 3 AltaVista SDK Architecture 11
Figure 4 JavaBeans Agent 15
Figure 5 CORBA Agent 16
Figure 6 ORB Bridge 17

CMU/SEI-98-TR-011

iv CMU/SEI-98-TR-011

List of Tables

Table 1: JavaBeans Special Functions for All
Component Types 5

Table 2: JavaBeans Special Functions for CORBA
Interfaces 6

Table 3: CORBA Interface-Specific Special
Functions 6

CMU/SEI-98-TR-011

vi CMU/SEI-98-TR-011

Acknowledgements

Neil Christopher at the National Institute of Standards and Technology Manufacturing
Engineering Lab (NIST/MEL) sponsored this work. Special thanks to John Foreman for
supporting this work and SEI reviewers Jeromy Carriere and Suzanne Couturiaux.

CMU/SEI-98-TR-011 vii

viii CMU/SEI-98-TR-011

Abstract

Agora is a software prototype being developed by the Commercial Off-the-Shelf (COTS)-
Based Systems Initiative at the Software Engineering Institute (SEI). The object of this work
is to create an automatically generated and indexed worldwide database of software products
classified by component model. Agora combines introspection with Web search engines to
reduce the costs of bringing software components to, and finding components in, the software
marketplace. This report describes Agora's role in an emerging component industry and the

features and capabilities provided by Agora. The implementations of a JavaBeans agent and a
Common Object Request Broker Architecture (CORBA) agent are also described. These
agents are used to gather components of their respective types.

CMU/SEI-98-TR-011 ix

CMU/SEI-98-TR-011

1 An Emerging Component Industry

1.1 Background
Software developers welcome the emergence of a robust marketplace of software
components, as a highly competitive marketplace works to the advantage of both producers

and consumers of software components. However, two essential requirements for a
component marketplace have been slow to emerge: standard, interchangeable parts, and the
consumers' ability to find the right parts for the job at hand. Fortunately, recent advances in
component and Web technology are, at last, providing the means for satisfying these
requirements. Component technology, such as JavaBeans and ActiveX, provides a basis for
interchangeable parts, while the Web provides a means for consumers to locate available

components.

1.2 Agora
Agora is a prototype being developed by the Software Engineering Institute at Carnegie
Mellon University. The object of this work is to create an automatically generated, indexed,
worldwide database of software products classified by component type (e.g., JavaBean or
ActiveX control). Agora combines introspection with Web search engines to reduce the costs
of bringing software components to, and finding components in, the software marketplace.

Introspection is a term primarily associated with JavaBeans that describes the ability of
JavaBeans to provide information about their own interfaces. Common Object Request
Broker Architecture (CORBA) provides a similar capability of divulging information about
interfaces, although these data are maintained external to the CORBA server in an

implementation repository.

Until recently, surfing was a typical approach for finding information on the Web. Search
engines, such as Webcrawler, Lycos [Maudlin 97], AltaVista, and InfoSeek, enable users to

search for and locate information published on the Web more effectively. Search engines use
indexes that are automatically compiled by computer programs (such as robots and spiders)
and that go out over the Internet to discover and collect Internet resources. Searchers can
connect to a search engine site and enter keywords to query the index. Web pages and other
Internet resources that satisfy the query are then identified and listed [Webster 96].

The combination of introspection with component search is a necessary but insufficient
element of an online component marketplace. Elements required by a component
marketplace that are not addressed by this work include security, electronic commerce, and

CMU/SEI-98-TR-011 1

quality assurance. The National Institute of Standards and Technology (NIST) Advanced
Technology Program (ATP) Focused Program on electronic commerce [Hurwitz 98] is
already addressing some of these concerns. This work is taking place in the context of NIST
programs in component-based software [Nowak 97] and the NIST Laboratory program
(Manufacturing Engineering Laboratory, Manufacturing Systems Integration Division)
interest in software components for the manufacturing domain [SMA 97, NIST 98].

Even modest steps towards integrating component technology and Web search can have an
impact on the emergence of an online component marketplace by

• providing developers with a worldwide distribution channel for software components

• providing consumers with a flexible search capability over a large base of available
components

• providing a basis for the emergence of value-added component qualification services,
within and across specific business sectors

CMU/SEI-98-TR-011

2 Features and Capabilities

Agora supports two basic processes: the location and indexing of components and the search

and retrieval of a component. The location and indexing of components is primarily an
automated background task, while a human typically performs search and retrieval. There are
exceptions in that an interface exists to allow a vendor to add a specific component to the

index.

2.1 Location and Indexing
Agora uses a variety of agents for locating and indexing component information. Currently a
JavaBeans agent and a CORBA agent have been developed, each able to locate and index

components of their respective type.

Components are introspected during the indexing phase to discover their interfaces.
Introspection of JavaBeans is accomplished using the mechanism provided by JavaBeans
Introspector class. In CORBA, interface information is maintained separately in an interface
repository. As a result, this information may not be available because it is not in the
repository, the repository is not running, or the information cannot be located. In each of
these cases, the interface information cannot be successfully retrieved and indexed.

Once a component has been identified, the interface information is decomposed into a set of
tokens. A document is created in the index that includes these tokens. Unlike a text
document, component interface information can be differentiated into different fields.
Examples of fields may be methods, attributes, or events. This information is also maintained
for each component to enable specialized searches to be performed. The component name
and type are also preserved as fields to enable searches by name and component type. Meta-
information about each component is also maintained with the document, including the
Uniform Resource Locator (URL) for each component. Maintaining the component URL
allows detailed interface information to be re-collected during the search and retrieval
process and allows the user to examine, in the case of hypertext transfer protocol (HTTP)-

based URLs, the Web page containing the component.

2.2 Search and Retrieval
Search and retrieval in Agora is a two-step process. Initially a searcher enters query terms and
optionally specifies the type of component. These terms and other criteria are searched
against the index collected by the search agents. It is also possible to issue afield search to
find a term in a particular context (for example, to find components of a given name or

CMU/SEI-98-TR-011 3

components that implement a given component model). The result set for the query is sent
back to the user for inspection. Each result includes meta-information including the URL of
the component. The searcher can then refine or broaden the search criteria based on the
number and quality of the matches.

Once the searcher has completed this breadth-wide search to identify candidate components,
individual components can be examined in detail. The URL for the component is returned to
the Component Introspector for re-introspection. This approach reduces the amount of
information that must be maintained in the index for each indexed component, ensures that
the component is still available at the specified location (URL), and guarantees that an up-to-
date interface description is retrieved.

Figure 1 shows the results from a JavaBeans search. In this case, the search criterion specifies
that the JavaBean must contain methods color and draw and property color but must not

contain the term funscroll. This search resulted in two documents being found, each with

relatively low relevancy ranking. The word count indicates how many occurrences of each
term were found in the database.

Seaj^lot-1 JayaBeari ffl| component in | Any jjll domain matching

l-wriethod:scroll -funseröll *prö£er.ty: color +method:draw

ftHelp | New Search) Advanced Search

Foutid 2 document

^0.24613^93 im>Jhmwmj^m£M9^0$^M76 VColorScroll

WörUeöüntkaetfoadfs^
24130;

Home | Search | About

Figure 1: Agora Query Interface

Once a suitable result list has been returned, the searcher can select the link to the
component's URL. This normally allows the searcher to see what the component looks like
when it is operational and possibly collect additional information about the component.
Selecting the component name causes the component's interface description to be displayed.

4 CMU/SEI-98-TR-011

2.3 Advanced Search Features
Agora supports the basic operators '+' and '-': these operators indicate words or phrases that
are required or prohibited in the search results. Agora also allows advanced search
capabilities that support the Boolean logic operators AND, OR, NOT, and NEAR, as well as

the ability to specify ranking words that are different from the words in the search.

Agora supports a number of special functions that allow the user to narrow the search criteria
using specific characteristics of the component. Table 1 shows special functions that operate

across all component types.

Keyword Function

component:type Finds components of this type. Each type corresponds to some agent.

name:name Finds components with this name. This is equivalent to the applet function in

AltaVista.

Table 1: JavaBeans Special Functions for All Component Types

For, example, the user may restrict a query to search for components implemented as
JavaBeans by using the component function to specify the component type with the

following query:

component:JavaBeans

In addition to special functions such as component that operate across all component types,
there are also component-specific special functions. These functions are specific to each
component type, supporting component-specific capabilities and the use of domain-specific

terms.

For example, Agora supports the special functions shown in Table 2 for CORBA interfaces.
The CORBA special functions for operation and attribute map to the Java special functions
for method and property, shown in Table 3. Different names are used for these functions to
match more precisely to domain-specific nomenclature. There is no mapping between the
JavaBeans event function and CORBA. Special functions for exception and parameter in
CORBA derive naturally from the capabilities of the interface repository.

CMU/SEI-98-TR-011

Keyword Function

property:name Finds components that define a specific property. Use property-.color to find

components that define a property called color.

evenf.name Finds components that define specific event sets. Use evenf:propertyChange

to find components that define an event set called propertyChange.

method:name Finds components that define specific methods. Use

me//zo<i:createAnimation to find components that define a method called

createAnimation.

Table 2: JavaBeans Special Functions for CORBA Interfaces

Keyword Function

operation:name Finds CORBA interfaces that include specific operations. Use

operaft'o/KselectDrill to find a CORBA interface that defines an

operation called selectDrill.

parameter.name Finds CORBA interfaces that include parameters of a given name or

type. Use parameter.long to find a CORBA interface that contains an

operation that takes a long as a parameter.

exception-.na.me. Finds CORBA interfaces that define specific exceptions. Use

exception rlnvalidName to find CORBA interfaces that define an

exception called InvalidName.

attribute.name Finds CORBA interfaces that define specific attributes. Use

attribute-.color to find CORBA interfaces that define an attribute called

color.

Table 3: CORBA Interface-Specific Special Functions

2.4 Industry Domain
Application-specific lexicons are being developed that can be used to facilitate searches by
application domains such as manufacturing, medical, and finance. In theory, these lexicons
will help identify components in these domains and simplify the process of identifying
suitable components. Lexicon terms may be distilled from existing component interfaces that
are representative of a given domain. However, it is insufficient to parse these interfaces in a

CMU/SEI-98-TR-011

similar manner to the Agora indexer, as selected terms should be indigenous to a given
domain and are not easily found outside it.

During the search process, specifying a domain causes the lexicon of domain-specific terms
to be attached to the query. This allows the search engine to perform a relevancy ranking on
components that match the query terms. Query terms are best given by using the "+" operator
when searching a specific domain, as this ensures that these terms are found in components
included in the result set.

Lexicon terms are currently selected manually in Agora due to the intelligence required to
identify domain-unique terms.

CMU/SEI-98-TR-011

CMU/SEI-98-TR-011

3 Implementation

Agora is designed to be extensible to different component technologies, provide good
performance to searchers accessing the Web site, and provide advanced searching
capabilities. The budget for completing work on Agora and publishing the results is under
$70,000. Resultantly, the implementation strategy that we adopted required the use of
existing components as leverage. For example, the basic functionality of the AltaVista
Internet service was incorporated into Agora. This service is used to identify Web pages
containing Java applets. This basic functionality was extended to identify and introspect
JavaBeans. Introspected interfaces are then used to build a searchable index of terms.

In addition to the AltaVista Internet Service, Agora incorporates the AltaVista Search
Developer's Kit (SDK). This allows Agora to provide advanced search capabilities at
considerably lower cost than custom development of these features.

The overall Agora architecture is shown in Figure 2. Independent agents are used for each
component class, making the design extensible to other components models.

An agent in Agora is simply an independent process that understands a specific domain and
component class. Two agents have been developed so far: a JavaBeans agent that harvests
URLs from the AltaVista Internet service and a CORBA interface agent. The JavaBeans
agent searches for hypertext markup language (HTML) pages containing applet tags using
the AltaVista Internet service, loads and introspects these applets, and indexes the interfaces
of any JavaBeans that are discovered. The CORBA interface agent uses the CORBA naming
service to find CORBA interfaces and the implementation repository to discover their
interfaces. A third ActiveX agent is under consideration.

The query client is implemented using Java Server Pages (JSP) on Sun's Java Web server.
The use of Java Server Pages allows Java code to execute on the server to generate HTML
pages that are then downloaded to the client.

Java Server pages can be extended using JavaBeans to which both explicit and implicit calls
are made. Implicit calls are made to set properties within the JavaBean corresponding to input
fields in the HTML form. For example, the main text input field for entering the search
criteria in the Agora query interface is named criteria. When a POST method occurs,

either because the enter key was pressed or because an input field of type submit was
selected, the Java Web Server calls the setCriteria () member function on the imported

JavaBean.

CMU/SEI-98-TR-011 9

««■g^ti

WSH

JavaBeans
Agent

fc"*

JavaBeans
Introspector

CORBA
Agent

CORBA
Introspector

ActiveX
Agent

ActiveX
Introspector

Filter
AltaVista

Search
Index Server

AltaVista
Query Server

Search far (S^&ljri component in |y$nufä^iftng Jg domain matching

krvent°y__*i ^^'jfejtii'' ~Y > vv.. -Äü^^i A
y

Java Web
Server

\;i&
^ •^ t

F/gftyre 2: /Igfora Architecture

The existing implementation of Agora has been operationalized to identify and catalog
JavaBeans over the Internet. This version is also capable of indexing CORBA interfaces,
although an effective CORBA search algorithm has not yet been implemented. In addition to
these component types, it is possible to develop agents that search, introspect, and catalog
ActiveX controls, remote method invocation (RMI) servers, and other reusable software
components. In fact, multiple agents may be developed per component class to implement
different search strategies (for example, a traditional spider to search Intranets for
JavaBeans).

10 CMU/SEI-98-TR-011

3.1 AltaVista Search Developer's Kit (SDK)
Digital's AltaVista SDK is used by Agora for indexing and retrieving component data. The
AltaVista SDK provided advanced search capabilities that would have required substantial
effort to develop. Although the AltaVista SDK had many advantages, it also introduced some
complexity. For example, it was necessary to implement components such as the JavaBeans
agent in Java to support JavaBeans introspection. The AltaVista SDK, on the other hand, is
composed of C language interfaces and libraries which are only available on Windows NT
and DEC Alpha platforms. Thus we were required to implement some form of wrapper for
the AltaVista SDK to make its services available to the JavaBeans agent.

Figure 3 is taken from the AltaVista SDK documentation and shows the low-level
architecture of an SDK application. In Agora, the AltaVista SDK was incorporated using
CORBA. A C++ wrapper was developed around the AltaVista SDK for both the index and
query services. Each of these runs as a separate CORBA service in the role of the "User
Application" as shown in Figure 3.

avs_open()

User Application

z
avs_newdoc() avs_makestable() avs_compact ()

AVS Library

Application's Filter Function

_£
avs_addword() avs_setdocdate() avs_setdocdata()

1
avs_close()

avs_addf ield() avs_addliteraK)

Figure 3: AltaVista SDK Architecture

Components are discovered and introspected by the agents. Interfaces are tokenized based on
white space and internal capitalization. The resulting terms are concatenated in a component
description string along with some meta-information, an example of which is shown below:

http://www.orl.co.Uk/~bjm/java//SlideShow <name> SlideShow
<property> color <event> pageTurn <method> load Slide main
show Details run btn About show Captions load Next Slide

The component description string is passed to the index server. The index server calls the
avs_newdoc () function, passing the component description string. The Agora-supplied
filter then uses the avs_addword () function to add the terms contained in this string to the

CMU/SEI-98-TR-011 11

index, as well as the other AltaVista application program interface (API) calls shown in

Figure 3 to record various properties about the document.

The component description string also contains meta-data in the form of special tags in the
string delimited by '<' and '>' characters. The terms inside these delimiters correspond to
special fields that can later be queried by a user of the system using the special functions

provided.

The creation of this string is imposed by the architecture of the AltaVista SDK. Each
component is modeled in the AltaVista index as a separate document. Since the
avs_newdoc () function is called per document, and it, in turn, calls the filter function to

add the words and fields, it is necessary to embed the meta-data in the component description

string, which is then interpreted by the filter function.

3.2 JavaBeans Agent
For the implementation of the Internet JavaBeans agent, we decided to implement a meta-
search engine to harvest candidate URLs from the AltaVista Internet service. The AltaVista
service was selected because of its special functions for Web searches. In particular, searches
of the format: "applet: class" can locate HTML pages containing applet tags where the
code parameter is equal to specified Java applet class. For example, a search for
"applet: sine" can be used to find applets where the code parameter is specified as
"sine" or "sine. class".

The basic algorithm that we used to harvest is to query the AltaVista search engine to return
pages containing applets using "applet:" as the query string. Currently, there are a total of
1,530,275 documents matching this request. AltaVista responds by generating an HTML page
containing the first 10 hits from the resulting set. After parsing the page to extract the URL
for these Web pages, the string "&navig" is appended to the end of the command sent to
AltaVista along with the number of hits. This command is then sent to the AltaVista Internet
service, which then returns the next 10 hits.

One problem with this approach is that the AltaVista service, either by design or by flaw,
does not provide matching documents beyond the first thousand for a'given query. This
required that a mechanism be developed to distribute the estimated 1.5 million documents
across multiple queries so that each query (or most of the queries) returns less than 1000

documents.

One approach for distributing these documents across multiple queries is to segment the
documents according to the first three characters in the name of each applet. The AltaVista
service supports the use of wildcards such as an asterisk (*) to broaden a search. The
wildcard, however, must be proceeded by at least three characters. The number of

12 CMU/SEI-98-TR-011

combinations of N alphanumeric characters taken M ways can be calculated using the
following formula:

c = Nl
^NM M\(N-M)\

AltaVista defines a word as any string of letters and digits that is separated by either white

space (such as spaces, tabs, line ends, or the start or end of a document) or special characters
and punctuation (such as %, $, /, #, and _). Therefore, any given name can consist of any
combination of alphanumeric characters of which there are 36 (26 alphabetic and 10
numeric).1 These 36 characters can be combined in 7,140 unique alphanumeric strings. If
distributed evenly across the 1.5 million documents, this would result in approximately 210
documents per query. Actual applet names are, of course, not evenly distributed across these
groupings.

A second approach for distributing documents across multiple queries is to use the date field.
Advanced searches in AltaVista can be restricted to find documents last modified during a
specific date range. The JavaBeans agent uses this feature to segment the total number of
documents into groups of less than 1000. Starting from a date (initially the current one), we
query the AltaVista database to find the exact number of matches over the previous 30 days.
The advanced search capability of the AltaVista Internet service provides a function for this
that can be invoked by passing &fmt=n to AltaVista's query common gateway interface
(CGI) executable file. The exact number of matches from the generated HTTP page is
examined to see if it is between 0 and 1000. If the number of matching documents is greater
than 1000, we reduce the date range by half and resubmit the query. Alternatively, if we find
0 matches, we expand the date range.

Once a date range that contains between 0 and 1000 hits has been identified, we harvest these
documents by reissuing the search query without the &fmt=n parameter, bringing up the

actual search results. This technique has been generally successful in finding queries that
contain from 1 to 1000 entries. However, there have been cases where a single day contains
more than 1000 entries. Since a single day is the limit of granularity of these queries, we
must harvest the first 1000 entries and discard the remainder.

Another defect in the AltaVista Internet service is that the "exact" number of matches
returned by the &fmt=n parameter is not always accurate. This is primarily a concern when

the number returned is greater than the actual number of matching documents, since the
JavaBeans agent will continue to loop in an attempt to harvest these results. This made it
necessary to add a timeout mechanism so that the loop would exit after a fixed number of
attempts to retrieve these matching documents from AltaVista.

This does not consider internationalized use of the International Organization for Standardization
(ISO) Latin-1 character set such as a word containing an accent or other diacritical mark.

CMU/SEI-98-TR-011 13

The agent constructs a URL for the JavaBeans class. For example, URLs for JavaBeans
consist of the Web URL, the code base, the class, and/or the archive name. This URL is
maintained as the document data in the index, along with the introspected interface data.

3.3 Performance of the JavaBeans Agent
Considerable effort was spent optimizing the speed at which components could be collected.
Initially, we found that the JavaBeans agent was discovering JavaBeans at low rate, and even
this performance would drop off quickly.

The JavaBeans agent is implemented using the beta2 version of Java Development Kit (JDK)
1.2. This version of the JDK contains classes, such as the URLClassLoader, that are not

available in JDK 1.1. Initially, the agent was implemented using a single thread of control.
We discovered that this agent might run well for several minutes, but then it would often bog
down in calls to the URLClassLoader. A typical run might retrieve in the vicinity of 20

JavaBeans before grinding to a halt.

To address this problem, we decided to introduce multiple threads for examining the URLs
harvested from AltaVista, loading the classes with the URLClassLoader and performing
the introspection on the resultant class. We developed a simple synchronized queue. The main
program would harvest URLs from the AltaVista site and add them to the queue.
Approximately 20 independent threads would then retrieve these URLs from the queue for
introspection.2

Since loading and introspecting classes is the most central processing unit (CPU)-intensive
portion of the overall component collection process, we further decided to separate this
functionality out into a collection of identical RMI servers. This arrangement allows us to
provide load balancing by distributing the work of loading and introspecting classes across
multiple processors. Each of these remote loaders, in turn, connected to the index CORBA
server running on the NT platform. The resultant architecture is shown in Figure 4. Although
the index server might appear to be the bottleneck in the system, it was, in actuality, never
severely taxed and no component data were lost due to time-outs from the server.

This more sophisticated arrangement helped, but we found that after retrieving an average of
40-60 JavaBeans the JavaBeans agent again began to bog down in calls to the
URLClassLoader. We tried using the Sun supplied sunwj it compiler at this time, which

provided an order of magnitude better runtime performance of the JavaBeans agent.
However, this improved performance only served to decrease the time required to collect the
components and did not affect the total number of JavaBeans retrieved.

2 An excessive number of threads can cause the depletion of limited system resources, such as the
number of available file descriptors.

14 CMU/SEI-98-TR-011

At this point we looked at a number of options for achieving continual operation of the
JavaBeans agent and optimizing the number of components indexed. One option was to solve
the problem of the URLClassLoader hanging by specifying a time-out. However, the
URLClassLoader available with the beta2 JDK 1.2 release does not provide a mechanism

for specifying a time-out or a means to access the underlying socket layer. The second option
was to provide some level of internal thread management to kill and restart threads that were

hung.

AltaVista
Harvester

Remote
Method CORBA

Invocation HOP

*<Jr

URL

Link Thread Remote Loader

Link Thread j MRemote Loader

Link Thread Remote Loader

URL Link Thread Remote Loader

Figure 4: JavaBeans Agent

We finally decided to implement a crude but effective solution. The JavaBeans agent was
modified to check point its work by recording its progress through the AltaVista database: the
JavaBeans agent recorded the current date range being examined and the number of hits in
that data range processed so far. The JavaBeans agent is restarted each hour (using cron
under UNIX or the service Schedule under Windows NT) using the preserved state data. A
similar approach was used in IBM's jCentral [Aviram 98] and appears to be an effective
means of improving performance. In Agora we were able to retrieve over 800 JavaBeans in a
24-hour period, and an additional 1400 JavaBeans over a 48-hour period.

We expect these numbers to improve as we address other deficiencies in the implementation
and integrate newer, more robust versions of the JDK.

3.4 CORBA Agent
In addition to the JavaBeans agent, a CORBA agent was implemented, although this agent is
more experimental due to the lack of a CORBA infrastructure necessary to fully support the
location of CORBA-based components.

CMU/SEI-98-TR-011 15

3.4.1 CORBA Background
To understand the implementation of the CORBA agent, it is necessary to understand some
details about CORBA itself. In CORBA, servers are implemented as distributed objects. Each
of these objects is represented by an object reference. Object interfaces are defined using the
Object Management Group Interface Definition Language (OMG DDL). This language is
used to define the operations that may be performed on objects and the parameters to those
operations. DDL is compiled into stubs that can be statically linked at compile time. It may
also be translated into an interface repository that can be dynamically accessed at runtime.

CORBA servers can implement any number of interfaces and any number of objects can be
created that implement a given interface. The object request broker (ORB) maintains objects
in a vendor-specific manner in an implementation repository. Objects may be located in an
implementation-independent fashion using the naming service.

The naming service is defined by the OMG as part of the Common Object Services or
CORBA Services. The naming service allows one or more logical names to be associated
with an object reference. A server that holds an object reference can register it with the
naming service, giving it a name that can be subsequently used by clients of that server to
find the object. Client applications can use the naming service to obtain the object reference
using the logical name assigned to that object.

3.4.2 Application Bridge
The naming service provides a standard mechanism for locating CORBA objects, allowing
Agora to dynamically locate objects at runtime. This is a necessary but insufficient
mechanism since Agora must also be able to dynamically determine component interfaces at
runtime. This problem is partially addressed by the CORBA interface repository. An interface
repository contains descriptions of CORBA object interfaces. The data in an interface
repository are the same as in DDL files, but the information is organized for runtime access by
clients. A client can browse an interface repository or look up the interface for any object for

which it has a reference.

Figure 5 illustrates the architecture of Agora's CORBA agent. The CORBA agent binds to a
CORBA naming service and iterates through the values using the Bindinglterator
naming service interface. The binding name of each object is then resolved to a CORBA
object. The CORBA object can be used to access interface information directly using the
get_interf ace () call or indirectly using the repository identifier.

I—^ Interface
Repository

-► CORBA
Agent

AltaVista
Search

Index Server
CORBA
Server

Index —► ►

Naming
Service

^
^ '

CC

w ^

Figure 5: WBA Agent

16 CMU/SEI-98-TR-011

For each CORBA interface discovered in this fashion, we extract attribute and operation
names (including associated return value, parameter names, and defined exceptions) and
index the terms. As discussed previously, CORBA interfaces can be searched for using
special functions to find components that define a particular operation, attribute, parameter,
or exception.

The AltaVista index server was developed using version 2.3 of Iona's Orbix. The JavaBeans
agent, for example, establishes a connection with the index server using the bind ()

function.

The CORBA agent was implemented to work with the Visigenics' VisiBroker
implementation repository and Naming Service. VisiBroker was selected in this case due to
some vendor unique services, such as the location service, that we wished to investigate.

The use of VisiBroker introduced a design problem in that the CORBA agent could not be
both a VisiBroker and an Orbix client at the same time, as these libraries would clash. It is
possible, but difficult, to get an Orbix client to communicate with a VisiBroker naming
service, since a call to resolve_initial_ref erences () to resolve the
"NameService" can only be used to connect to the naming service supplied by the same

vendor. This requires that the interoperable object reference (IOR) for the naming service be
obtained independently and converted in an object reference and narrowed to the naming
service.

Rather than deal with these interoperability problems, we used an application bridge to
connect the index server with the CORBA agent by introducing an additional RMI server
between the two processes as shown in Figure 6.

HOP JRMP

CORBA
Agent ORB Bridge ^ w

VisiBroker ORB Orbix ORB

AltaVista
Search

Index Server
Index

Figure 6: ORB Bridge

Like the JavaBeans agent, the ORB bridge is implemented as an Orbix client; however, it
also functions as an RMI server. The CORBA agent can now be freely implemented as a
VisiBroker client and communicate with the ORB Bridge via RMI calls over the Java Remote

Method Protocol (JRMP). This solution was simple to implement and does not introduce any
significant runtime overhead.

CMU/SEI-98-TR-011 17

18 CMU/SEI-98-TR-011

4 Comparison of Agora to Related
Technologies

Agora can be compared and contrasted with two different technologies: Web search
technology and software repository technology. There are also some interesting comparisons
that can be made between developing agents for JavaBeans and CORBA interfaces.

4.1 Agora and Existing Search Engines
Principal, existing search engines provide convenient support for different kinds of Web
content. Different search capabilities are provided for different types of content. For example,
text content can be searched by simple but effective pattern matching, while images can be
searched only by image name.

Leaders in the Internet development community are voicing concerns about the growing
ineffectiveness of monolithic search engines used for a specific purpose [Aviram 98]. As the
Internet grows, information associated with any given keyword grows accordingly, causing
general-purpose search engines to become clogged with massive amounts of often irrelevant
data.

The Agora search engine enhances existing but rudimentary search capabilities for Java
applets. By using Java introspection, the Agora search engine can maintain a more structured
and descriptive index that is targeted to the type of content (the component model) and the
intended audience (application developers) than is supported by existing search engines. For
example, information about component properties, events, and methods can be retrieved from
Agora.

Developers of search engines such as AltaVista might decide to incorporate this kind of
search capability; this would be a welcome indication of Agora's success. However, it is also
possible that capabilities such as the Agora search engine will occupy a value-added market
niche in the overall World Wide Web. For example, capabilities such as domain-specific
searches may be too narrow for broad-based search engines to support profitably.

4.2 Agora and Software Repositories
A traditional approach has been to develop large-scale software repositories as large central
databases containing information about components and, often, the components themselves.
Examples of such systems include the Center for Computer Systems Engineering's Defense

CMU/SEI-98-TR-011 19

System Repository, the JavaBeans Directory, and the Gamelan Java directory. Such efforts
have historically failed, principally as a result of their conception as centralized systems. The
reasons for these failures include limited accessibility and scalability of the repository,
exclusive control over cataloged components, oppressive bureaucracy, and poor economy of
scale (few users, low per-user benefits, and high cost of repository mechanisms and

operations).

Agora replaces old-fashioned and costly software repositories. Agora automatically compiles
indexes by going out over the Internet and discovering and collecting information about
software components. Agora does this in a nonjudgmental manner, so the problem of having
a sole arbiter decide what does and does not belong in the repository is eliminated. Quality
assurance in the Agora model is not guaranteed—we believe that component databases need

to be, at first, free and inclusive. Value-added industries such as consumer reports and

underwriter labs can add value by providing independent quality assurance of popular
components. This will help ensure that candidate components are identified and not simply

eliminated based on the criteria of the company maintaining the repository.

20 CMU/SEI-98-TR-011

5 Summary and Conclusions

Agora is designed to make it easier for system integrators to discover components that meet
the requirements of their systems and provide a means for component producers to advertise

their products. With Agora, components can be quickly located and evaluated as candidates
for integration, eliminating an inhibitor for component-based software development.
Although more work must be done to support a true commerce in software components,
Agora represents a useful integration of Web search engines and component introspection.

In general, we had considerably more success locating and introspecting JavaBeans than
CORBA interfaces. Locating CORBA services turned out to be problematic for several
reasons. First, the majority of CORBA servers do not store their object references in a
naming service. Second, even if they did, there is no good bootstrapping process for finding
an initial object reference for the naming service. This problem could be addressed by having
naming services respond to queries on a well-known standard port number or providing some
sort of meta-naming service. The best opportunity to discover a naming service is to look for
them at vendor-supplied default port numbers. Third, unlike Java applets, CORBA services
are not integrated into Web pages directly, but through intermediate languages such as Java.
This makes it difficult to use existing search services such as AltaVista to discover CORBA
services on the Internet.

Once a CORBA server is located, it is also difficult to extract interface information since this
information is not inherently part of the component, as in JavaBeans. Instead, CORBA relies
on an external interface repository. Use of the interface repository is optional, and the
majority of CORBA servers do not use it. Although it is apparent that CORBA servers have
some understanding of operations (without resorting to the interface repository) to support
Dynamic Invocation, there is no interface that provides access to this information.

Further, the necessity of establishing communication with a naming service, interface
repository, and object decreases the likelihood of finding and introspecting a CORBA
interface.

Agora demonstrates that it is feasible to create an automated tool for locating, introspecting,
and indexing JavaBeans on the Internet. Although not yet implemented, we hypothesize that
an ActiveX agent is equally plausible. For a CORBA Agora agent to be successful, the Object
Management Group (OMG) must adopt a component model comparable to JavaBeans, an
integrated interface repository, and a means of locating the naming service by means of a
well-known port or other mechanism.

CMU/SEI-98-TR-011 21

22 CMU/SEI-98-TR-011

References

[Aviram 98]

[Hurwitz 98]

[Maudlin 97]

[NIST 98]

[Nowak 97]

[SIMA97]

[Webster 96]

Aviram, Mariva H. "Code-Centric Search Tool Strives to Reduce

Java Development Time." JavaWorld [online]. Available WWW
<URL: http://www.javaworld.com/jw-06-1998/iw-06-
icentral.html> (June 1998).

Hurwitz, Shirley M. Interoperable Infrastructures for Distributed
Electronic Commerce. Available WWW <URL:
http://www.atp.nist.gov/atp/98wp-ecc.htm>.

Maudlin, Michael. "Lycos: Design Choices in an Internet Search
Service." IEEE Expert 12, 1 (January-February 1997).

National Institute of Standards and Technology. Framework for
Discrete Parts Manufacturing. Available WWW <URL:
http://www.mel.nist.gov/namt/projects/framwork/fw 1 .htm>.

Nowak, Michael. ATP Focused Program: Component-Based
Software. Available WWW <URL:
http://www.atp.nist.gov/atp/focus/cbs.htm> (November 1997).

Systems Integration for Manufacturing Applications. Available
WWW <URL: http://www.mel.nist.gov/msid/sima/sima.htm>.

Webster, Kathleen & Paul, Kathryn. "Beyond Surfing: Tools and
Techniques for Searching the Web." Information Technology
(January 1996).

CMU/SEI-98-TR-011 23

24 CMU/SEI-98-TR-011

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

August 1998
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Agora: A Search Engine for Software Components
5. FUNDING NUMBERS

C —F19628-95-C-0003

6. AUTHOR(S)
Robert C. Seacord, Scott A. Hissam, Kurt C. Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU7SEI-98-TR-011

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-98-011

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Agora is a software prototype being developed by the Commercial Off-the-Shelf (COTS)-Based Systems Initiative at the
Software Engineering Institute (SEI). The object of this work is to create an automatically generated and indexed
worldwide database of software products classified by component model. Agora combines introspection with Web
search engines to reduce the costs of bringing software components to, and finding components in, the software
marketplace. This report describes Agora's role in an emerging component industry and the features and capabilities
provided by Agora. The implementations of a JavaBeans agent and a Common Object Request Broker Architecture
(CORBA) agent are also described. These agents are used to gather components of their respective types.

14. SUBJECT TERMS Agora, Common Object Request Broker Architecture (CORBA), database, 15. NUMBER OF PAGES
30

commercial off-the-shelf components, introspection, JavaBeans, search engines, World Wide Web (WWW) 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-f

Prescribed by ANSI Std. Z39-18
298-102

